How to Check if Cooling Output inside Enclosures is Sufficient

Manufacturing automation systems are delicate and very expensive pieces of kit, which perform vital functions for the businesses they serve.

The enclosures that protect them must have strictly controlled internal environments with interior temperatures that are carefully maintained within a few degrees.  If not, the impact can be harmful to the inverter drives, power supplies, contactors, PLCs and other electrical and electronic components operating within them.  This requires careful control of the climate within the enclosure.

Here, Jason Swann, Rittal Product Manager for Climate offers some practical tips on how to evaluate an existing enclosure climate control through a series of simple checks.

How to check your cooling_3

Like all electrical equipment, drives create heat and they therefore have a major influence on the temperatures inside enclosures. Drives are often quoted as having efficiency of 97 per cent, so one with a rated output of 150kW can produce as much as 4.5kW of heat.

As well as the heat loss inside the enclosure, ambient temperatures within a production facility will also have an impact on the temperatures that a drive is operating within.  A typical enclosure climate control system is designed for an internal enclosure temperature of 35°C. This means that the performance of a cooling unit should be specified so that the average internal enclosure temperature of 35°C can be guaranteed under all load conditions and under all the ambient conditions that could be met at the machine’s location.

Checking the enclosure temperature
The first check is to measure the temperature within the enclosure to assess its climate control capability. Temperature sensors should be placed in a position within the airflow of the enclosure, sensors should not be placed on or near direct airflow from high temperature components. Otherwise temperature readings can be found to be inaccurate. The sensors should be left to monitor the temperature trend over a period of time.

If the sensor records air temperatures of well over 35°C (set point) then the output of the cooling unit should either be considered insufficient or, alternatively, that there has been a malfunction of the cold air routing in the enclosure. This means that the cooling air cannot reach (or can only partially reach) the temperature-sensitive components. 

How to check your cooling2

Checking the control behaviour of cooling devices
Another easy way of checking an enclosure climate control system is to observe the cooling unit’s control behaviour.

Unlike speed-controlled cooling devices such as the new Rittal  “Blue e+” cooling units, conventional enclosure cooling units begin with the two-point regulation of the cooling operation when a temperature inside the enclosure gets above of 35°C and finishes when the shutdown temperature of 30°C is achieved (at a typical hysteresis of 5K).  If a cooling device does not reach the shutdown temperature, a conventional cooling unit will therefore continue to operate. If this happens, it’s a good indication that the cooling unit has an insufficient output and suggest that there is likely to be a deficiency in suitable cooling air to the components inside the enclosure.

You can simply touch a device to determine a refrigerator’s operating status: the activity of the refrigeration compressor during cold production is accompanied by a slight vibration of the refrigerator housing that can easily be felt.  Alternatively, the exhaust temperature of the cooling unit in the external air circuit may be measured.  During active cooling operation, this will be significantly higher (potentially, anywhere between 10° and 40°C) than the ambient temperature.

Locating hotspots
You can also do a rough check of an enclosure’s climate control system with infrared thermography which measure the surface temperatures of the components inside the enclosure and these are recorded with an infrared camera.  If any areas have significantly elevated temperatures (“hot spots”) it is an indication that they are not being supplied with enough cooling air.

More information at www.rittal.co.uk and www.friedhelm-loh-group.com or on twitter @rittal_ltd.

Advertisements

Rittal’s DX Enclosure-Based Cooling Solutions Support Growing IT Needs

In today’s data-driven business models, even small companies have to contend with growing IT needs. When they expand their computing environments and install the latest class of servers, the issue of cooling the equipment becomes acute. Legacy air-cooling systems are no longer sufficient.

The Rittal LCU DX and LCP DX solutions deliver enclosure-based cooling via direct expansion units. The units are easy to install simply by mounting them on the side panels inside IT racks.

Rittal_lcu_lcp

Expanding a small-scale, air-cooled IT hardware environment to create a multi-enclosure facility often calls for a new cooling strategy.  The first and most fundamental question is whether water-based or refrigerant-based cooling is more appropriate. It also makes sense to understand the total cost of ownership – including both capital expenditure and ongoing operating costs.

Rittal’s LCU DX 

Direct expansion (DX) solutions for cooling IT equipment are the quickest and easiest solutions to implement and require less capital expenditure than water-based ones. DX solutions employ conventional refrigerant-based cooling with a split system and a compressor. Cooling is via a closed-loop refrigeration cycle, featuring an evaporator, a compressor, a condenser and an expansion valve.

Rittal’s LCU DX (Liquid Cooling Unit) offers enclosure-based cooling with DX units mounted inside 800 wide IT racks. They are available with up to 6.5 kW output in both single and dual redundancy variants.

The LCU system features horizontal air circulation, supporting the conventional method of front-to-back air flow to the 19-inch racks. Cold air is blown directly in front of the components. After being warmed by the servers, the air is drawn into the cooling unit at the rear of the enclosure and passes through the heat exchanger, which cools it down. This method requires IT enclosures that are sufficiently air-tight, such as Rittal’s TS IT series. Otherwise cold air will escape, impacting overall efficiency. LCU DX units are installable in 800-mm server enclosures.

Rittal LCP DX

The Rittal LCP DX (Liquid Cooling Package) is another example of a rack cooling unit. Suitable for 12 kW power dissipation, it can be mounted on the side of an IT enclosure, enabling a single device to cool two enclosures. One version of LCP DX blows cool air out to the front and can be employed to create solutions with a cold aisle that cools multiple IT racks.

Modular Flexibility

By deploying state-of-the-art, modular and rack-based climate control systems, enterprises can remain flexible and responsive to changing IT needs – however uncertain – well into the future.

Further information at www.rittal.co.uk and www.friedhelm-loh-group.com or on twitter @rittal_ltd.